Countingk-Juntas,AsymptoticInfluences&HammingGeometryJuspreetSinghSandhuSeptember28,20181IntroductionWebeginbyintroducingthenotionsofInfluence,NoiseStability&k-JuntasofBooleanFunctions.Wethendeveloparecurrencerelationforhowtocountk-Juntas,andattempttoreasonabouttheirasymptoticgrowth.Followingthis,wetalkaboutthegeometryoftheHammingCubeanditsrelationtoInfluence,particularlytheMajorityfunctionandmonotonefunctions.WethenconcludewithasectionwherewestateandsketchtheproofforaweakversionofArrow’sTheorem,andendbystatingthemorerobust(approximate)versionusingtheFKNTheorem.2AcknowledgementsAlargepartofthismusing/postisbasedonmyextensions/solutionstovariousmaterial/exercisesfromRyanO’Donnell’sbookontheAnalysisofBooleanFunctions.3Influence,NoiseStability&k-JuntasIntheAnalysisofBooleanFunctions,theconceptsofInfluence,NoiseStability&Juntasplayacentralrole.Wewillusethissectiontodefinesomeofthesebasicnotionsandsomeproperties(analytical&combinatorial)aboutthem.WewillconsidermainlyBooleanFunctionsfembeddedinH2n.So,everyfunc-tioninthispostisabooleanfunction.(BooleanFunction)f:{−1,1}n→{−1,1}EveryBooleanFunctionhasa(unique)FourierExpansionasamulti-linear1
Polynomial,writtenas:(FourierExpansion):f,f=PS[n]ˆf(S)χS,where,χS=QiSxiHere,χSistheparityfunctiononS,andtheFourierExpansionisthelin-earcombinationofthelinearlyindependentbasisonwhicheveryfcanberepresented.ThisistherepresentationthatallowsustothinkoffasapointembeddedinH2n.Itisusuallycustomarytoscalethispointtobeofunitlength(L2norm).So:(Parserval’sTheorem):hf,fi=Ex∼{−1,1}nf2(x)=PS[n]ˆf2(S)=1Thisfollowsfromtheorthonormalityoftheparityfunctions,andthefactthatsquaringisequivalentto1inF2.WecannowdescribetheInfluenceofaBooleanFunction.Informally,theinflu-enceofabooleanfunctionontheithcoordinatesimplyrepresentstheprobabilitythatflippingxixwillflipf(x).Moreformally:(Influenceati):Theinfluenceatco-ordinateiforafunctionfis:Infi[f]=Prx∼{−1,1}nf(x)6=f(xi)SincetheInfluenceofaBooleanFunctionisintrinsicallyrelatedtochangeinf(x)withrespecttoachangeinxi,itcanbeseenasmeasuringtheindicatorofthediscretedirectionalderivative(Di)off.Assuch,wecantaketheexpec-tationof(Di)2toarriveataFourier-analyticrepresentationofInfi[f]:Infi[f]=PiSˆf2(S)Thisisagoodexampleofacasewherewecan,toparaphraseRyanO’Donnell,”readoffaninterestingCombinatorialpropertyofaBooleanFunctionfromitsFourierexpansion”.Extendingthisidea,wecandefinethetotalInfluenceofafunctionfas:I[f]=Pni=1Infi[f]Animportantresultthatrelatesthevarianceoffwithitstotalinfluenceis:(PoincareInequality):f,Var[f]I[f].WecanprovethisbycomparingtheFourier-analyticexpansionsofboththeseoperators.WithalittlemoreelementaryCombinatoricswecanalsoextendthisinequality(forbooleanfunctionswiththerange{−1,1})to:Infi[f]Var[f]I[f]WecannowintroducetheconceptofNoiseStabilityinbooleanfunctions.In-formally,thenoisestabilityofabooleanfunctionistheabilityofthefunctiontonotchangeitsoutputwhentheinputbitsareflippedbysomeprobability(parametrizedbyρ).Formally:2
(NoiseStability):f,ρ∈{−1,1},theNoiseStabilityoffatρis:Stabρ[f]=EyNρ(x)[f(x)f(y)]Bydefinition,Nρ(x)definesthedistributionwhereyisdrawnsuchthatitiscorrelatedwithxwithprobabilityρ.So,E(xiyi)=ρ,whichmeansthatwecancomputethestabilityoftheparityfunctions:Stabρ[χS]=E[QiS(xiyi)]=ρ|S|Therefore,theFourier-ExpansionofStabρ[f]is:Stabρ[f]=PS[n]ρ|S|ˆf2(S)Wewillreturntotheaboveconceptslaterwhenwetryto,forexample,useHammingGeometrytounderstandInfluence,andattempttostateandsketchproofsofArrow’sTheorem&theFKNTheorem.Wenowmoveontok-Juntas.Informally,ak-Juntameasuresthe”true”num-berofvariablesafunctionfdependson.Intuitively,onecanseethenumberofvariablesafunctiondependsonbyseeingwhichcoordinatesihaveInfi[f]=0.Weformallydefineak-Juntaas:(k-Junta):fissaidtobeak-Juntaif:f=g(xi1,..,xik),where{i1,..,ik}⊂[n]Therefore,ak-Juntadependsonatmostkcoordinates.4Countingk-JuntasWewilltryandcountthenumberofk-JuntasgivensomenN,toestimatethe”richness”ofk-Juntasandthefractionofbooleanfunctionsitcapturesonncoordinates.Itiseasytoseethatthenumberof1-Juntasforanynis:|1-Juntas|n=2n+2,wherewehavetheconstantfunctions(2)andthedictator(n)andanti-dictatorfunctions(n).Itis(quite)non-trivialtocountthenum-berofk-JuntasforanarbitrarykN.Bydefinition,thenumberofk-Juntasdependonatmostkcoordinates,andsowecanexpressthemas:|k-Juntas|n=|(k1)-Juntas|n+|{g:gdependsonexactlykcoordinates}|Theeffortgoesintocomputingthesecondtermoftherecurrence,sincewealreadyhaveourbasecase-|1Juntas|n=2n+2.Now,functionsthatdependonexactlykcoordinatescandependonk-variableschosenfromanyk-subsetof[n].Furthermore,thereare22ktotal(boolean)functionsonkvariables.However,fromthese,wecansubtractoffunctions3
thatdependon(k1)variablesofless.Thiscanbeaccomplishedbycalculat-ingthenumberof(k1)-Juntasforn=kandsubtractingthemfromthetotalnumberofk-aryfunctions.Thisleadstoanicerecurrencerelation:|k-Juntas|n=|(k1)-Juntas|n+nk!(22k−|(k1)-Juntas|n=k)Evaluatingleadstothefollowingexpressionsfor(certainvaluesof)k:(k=1):|1-Juntas|n=2n+2(k=2):|2-Juntas|n=10·n2!+2n+2(k=3):|3-Juntas|n=218·n3!+10·n2!+2n+2Introspectingtheleadingcoefficients(2,10,218...)doesnotindicateanyobvi-ousseries.Asaresult,itishardtoarriveatacombinatorialgeneratingfunctionforthenumberofk-Juntasofan-arybooleanfunction.Despiteourefforts,wewereunabletosolvetherecurrencetoarriveataclosedform.Wecan,however,takeaquicklimittoverifythecorrectnessoftherecurrencerelation:limkn|k-Juntas|n=|(n1)-Juntas|n+nn!(22n−|(n1)-Juntas|n)=22nLetckdenotethenumberofk-arybooleanfunctionsthatdependonnomorethan(k1)-coordinates.Wecanalsoestimatethefractionofk-Juntabooleanfunctionsovern-coordinates:|kJuntas|n|Bn|=|(k1)Juntas|n22n+nk!(22kck)22nTheleadingordertermfor|(k1)Juntas|nisO(nk1·22k1),allowingustorewritethefractionas:|kJuntas|n|Bn|=O(nk1·22k1)22n+nk!(22kck)22nItseems,atleastatfirstglance,thatthisisthebestanalysiswecanhaveaboutcountingk-Juntaswithoutacloseformgeneratingfunction.However,itispossibletogetaslightlymoreelegantboundwhenwe’researchingforJuntasthatare’sparse’withrespecttothedimensionalityoftheinput.Morespecifi-cally,ifkloglog(n),then:|kJuntas|n|Bn|O(nloglog(n)cloglog(n))22n5HammingGeometry&AsymptoticInfluencesHavingattemptedsomeformof(asymptotic)analysisoncountingk-Juntas,wewillnowturnourattentiontotheinfluenceoftheMajorityfunction(and4
monotonefunctions).WeshallalsodescribeaGraph-Theoretic/GeometricwayofthinkingaboutInfi[f],anduseittocalculate(exactly)Infi[MAJn].GoingbacktothebasicdescriptionofInfi[f],weseethatwecanviewtheInfluenceoffatiasthefractionofinput-switchingedgeswhenpartitioningtheHammingCubeinto2disjointsubsets,sayHk,Hm,suchthat:xi=1,xHkandxi=1,xHm.Additionally,wedrawedgesbetweentwoinputsxHkandyHmiffy=xi.Thisisessentiallyabi-partitedecompositionG=(V,E),whereV={−1,1}nandE={(x,y)|y=xi}.Aswearefixingco-ordinateitobe+1inonesetand-1intheotherset,wecanrewritethedefinitionforInfi[f]:Infi[f]=|{(x,y):(x,y)E,f(y)=f(x)}||E|=|{(x,y):(x,y)E,f(y)=f(x)}|2n1TheedgesinthenumeratorarecalledBoundaryEdges.IntheHammingCube,theyarespreadacrossvariouslevelsofthecube.TheboundaryedgesareclearlyalsopresentintheHammingCube,becausetheyexistbetweenpairswithaHammingDistanceof1.Aseachedgerepresentsaparticularbit-fliponafixedcoordinate,thesetofboundaryedgesforafixedcoordinatedonotintersectwiththoseofanother.ThisalsoallowsustocountthetotalnumberofedgesintheHammingCube:|EHn|=n·2n1Thisgivesusarelationbetweenthetotalfr* D E M O *ndaryedges(Bf)inthebooleancubeandI[f]:Bf=I[f]nFortheremainderofthissection,wewillassumethatnZodd.NOTE:TheremainderofthissectionisapartialsolutiontoExercise2.22inO’Donnell’sbook.Skipitifyouwanttosolveityourself.Wewillnow(preciselyandasymptotically)computeInfi[MAJn].NoticethatMAJn(x)=1whenthenumberof1’sinx>n12.Therefore,theonlyboundaryedgesforMAJnarebetweenleveln12andn+12intheHammingCube.Itiseasytocountthenumberoftheseedgesusingelementarycombina-torics:|Bf|=forwarddeg(v)·nn12!,vHnn12Hnn12denotestheBooleanvectorswithn12onesinthem.Itiseasytousesomeelementarycombinatoricsandnoticethatforwarddeg(v)=n+12atlevel5
n12.Infact,moregenerally:forwarddeg(v)=nkatlevelk,vHnkWealsonoticethatInfi[MAJn]=Infj[MAJn],i,j[n]ThisiseasytoseeastheMajorityfunctionissymmetric(meaningthatitisinvariantunderpermutationstoitsinput).Therefore,weseethat:|Bf[i]|=|Bf|nWecannowusethegraph-theoretic/geometricnotionofInfluencederivedabovetocomputeInfi[MAJn]:Infi[MAJn]=|Bf[i]|2n1=(n+12)nn12!n·2n1Withabitofalgebraicmanipulation,thisyields:Infi[MAJn]=21n·n1n12!InordertounderstandhowInfi[MAJn]behavesforlargevaluesofn,weusetheStirlingApproximation:(StirlingApproximation):m,m!=(me)m(2πm+O(m12))ApplyingthisapproximationtoInfi[MAJn]yields:limnlargeInfi[MAJn]=limnlarge21n·(n1)!((n1)!)2=limmlarge2m·m!(m2)2limnlargeInfi[MAJn]=limmlarge(2π·m+O(m12))(π·m+O(m12))2limnlargeInfi[MAJn]=limmlarge(2π·m+O(m12))(π·m+O(m1))Asmlarge,wehavethatm>>>1m.Therefore:limnlargeInfi[MAJn]=(2π·m+O(m12))π·m=q2πm+O(m32)So,I[f]=Pni=1Infi[f]=n·Infi[f]=q2π·n+O(n12)Wenowstate2theoremsthatwewilluseforthenextsectiononArrow’sTheoremandtheFKN-Theorem:(Thm1):Iffismonotone,thenI[f]=Pni=1ˆf({i})Proof:Thisiseasilyseenwhenwerealizethat,inamonotonefunction,thediscretederivativeoperator(Di)isalwayspositive.Asaresult:Infi[f]=E[D2i(f)]=E[Di(f)]=ˆf({i})6
Therefore,I[f]=Pni=1Infi[f]=Pni=1ˆf({i})QED(Thm2):TheuniquemaximizersofPni=1ˆf({i})arethemajorityfunctions.So,monotonef,I[f]Infi[MAJn]=q2π·n+O(n12).Proof:Thisiseasytosee,whenweuseaninner-productexpansionofthesingletonfouriercoefficientssubjecttolinearityofexpectationandboundthemfromabove:Pni=1ˆf({i})=Ex[f(x)(x1+..+xn)]Ex[|x1+..+xn|]Theequalityforthisholdsonlywhenf(x)isthemajorityfunction.QEDHavingfinishedourforayintoasymptoticinfluences,basichamminggeometry,thebehaviorofthemajorityfunctionandtheinfluencesofmonotonefunctionsingeneral,wearenowequippedtomoveontoourfinaltopic.6Arrow’sTheorem&FKNTheoremArrow’sTheoremisastatementabouttheoutcomeofanelectioninvolvingm-parties,wherewedevelopanorderingtodecidetheultimatewinnerbasedonhavingpair-wiseelections.Ingeneral,foranelectionwithnpeopleacrossmparties,wechooseavotingfunction:f:{−1,1}(n·(n2))[m]suchthat,f=(g1,..,g(n2))andg:{−1,1}n→{i,j},wherei6=jandi,j[m].WewillrestrictourselvesasO’Donnelldoes,toaweakerversionwherem=3andgi=gj,i,j.Whenwedothat,wehave3pair-wiseelectionsforeachparty:[1,2],[2,3]and[1,3].EachoftheseelectionsisdecidedbythesameBooleanfunction.Thisschemeofchoosingawinnerbasedonpair-wiseelectionsiscalledtheCon-dorcetMethod.However,ourschemecanrunintoanissuewheneverthereisa”cycle”(orequivalently,thewinnersoreachelectiondon’tformalatticewithamaximalelement).Thishappenswhentheoutcomesofthepair-wiseelections(orderedlexicographically)formanequality.So,iftheoutcomeofeachelectionis:(-1,-1,-1)or(1,1,1)thenwechoose:i)1>2,2>3,3>1ii)1<2,2<3,3<17
Theseoutcomescannotresultinawinner,soforaCondorcetElectiontoelectawinnerina3-partyelectionusingsomegitoconstructthevotingfunc-tionf,itshouldbethecasethatf6=NAE3.ThisleadsustothestatementoftheweakversionofArrow’sTheorem,whereweassumeg1=g2=g3=f:(Arrow’sTheorem[Exact]):Givensomef:{−1,1}n→{−1,1}asavotingrule,iftherealwaysexistsawinner,thenf=χi,forsomei[n].(ProofSketch):TheprooffollowsrelatingtheprobabilityofaCondorcetwinnerexistingtotheStabilityofthefunctionandarguingthatifthisproba-bilityis1,thenalltheFourierWeightoffmustbeconcentratedonthe1-degreeparityfunctions.Itiseasytoseefromthisexercise,thatthisonlyhappenswiththedictatorornegated-dictatorfunctions.(Lemma):Givenavotingrulef:{−1,1}n→{−1,1},Pr[CondorcetWin-ner]=34(1Stab13[f])Theproofforthislemmaisleftasanexerciseforthereader,butbasicallyfol-lowsfromwritingouttheFourier-ExpansionoftheNAE3:{−1,1}n→{0,1}functionandthenusingLinearityofExpectationtoequateittothefactthat:Pr[CondorcetWinner]=Ex∼{−1,1}n[NAE3(f(x),f(y),f(z))]WethensetPr[Condorcetwinner]=1=34(1Stab13[f])Thisleadstotheconclusionthat:1=34(1Stab13[f])=34(1nXk=0(13)kWk[f])Forequality,weneedW1[f]=1,whichisonlypossiblewhenf=χiorf=χi,forsomei[n].QEDTherobustversionofArrow’sTheoremprovidestheabilitytoassertthat,ifwewanttohaveaCondorcetWinnerwithveryhighprobability,thenwemustbevery”close”tobeingadictatorfunction.By”close”here,wemeanthatthedot-productoffmustbe1-O(!)forsomeχi.Theprecisestatementisasfollows:(Arrow’sTheorem)[Robust]Givensomef:{−1,1}n→{−1,1}asavotingrule,suchthat,Pr[CondorcetWinner]=1-!,then,fisO(!)-closetosomeχi,withi[n].TheproofforthisstatementfollowsusingthefamedFKNTheorem:(Friedgut-Kalani-NaorTheorem):Givenf:{−1,1}n→{−1,1},suchthat,W1[f]1δ,fisO(δ)-closetosomeχi,withi[n].8